Schatten classes of Volterra operators on Bergman-type spaces in the unit ball
نویسندگان
چکیده
<p style='text-indent:20px;'>We devote to studying the condition of a holomorphic function <inline-formula><tex-math id="M1">\begin{document}$ g $\end{document}</tex-math></inline-formula> in complex unit ball id="M2">\begin{document}$ \mathbb{B}_n so that Volterra operator id="M3">\begin{document}$ T_g:A_\alpha^2\to A_\alpha^2 belongs Schatten id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula>-class. Assuming id="M5">\begin{document}$ n\ge2 and id="M6">\begin{document}$ \alpha&gt;-3 $\end{document}</tex-math></inline-formula>, we get following conclusions</p><p style='text-indent:20px;'>1. For id="M7">\begin{document}$ 0&lt;p\le n id="M8">\begin{document}$ T_g\in \mathcal{S}_p(A^2_\alpha) if only id="M9">\begin{document}$ is constant. </p><p style='text-indent:20px;'>2. id="M10">\begin{document}$ n&lt;p&lt;\infty id="M11">\begin{document}$ p(\alpha+1)+4n&gt;0 id="M12">\begin{document}$ if</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \int_{\mathbb{B}_n}\left((1-|w|^2)^{n+1+\alpha+2t} \int_{\mathbb{B}_n} \frac{|Rg(z)|^2 \mathrm{d} v_{\alpha+2}(z)}{|1-\langle z, w\rangle|^{2(n+1+\alpha+t)}}\right)^\frac p2 { \tau(w)} &lt;\infty, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where id="M13">\begin{document}$ t&gt;\max\{\frac np-\frac{n+1+\alpha}2, \frac{n-1}2\} id="M14">\begin{document}$ \tau(w) = (1-|w|^2)^{-n-1}{ v(w)} Möbius invariant measure id="M15">\begin{document}$ $\end{document}</tex-math></inline-formula>. Here id="M16">\begin{document}$ v normalized Lebesgue on id="M17">\begin{document}$ id="M18">\begin{document}$ v( \mathbb{B}_n) 1 id="M19">\begin{document}$ v_{\alpha+2}(z) c_{\alpha+2}(1-|z|^2)^{\alpha+2} (z) with constant id="M20">\begin{document}$ c_{\alpha+2} id="M21">\begin{document}$ v_{\alpha+2}( $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball
For positive Toeplitz operators on Bergman spaces of the unit ball, we determine exactly when membership in the Schatten classes Sp can be characterized in terms of the Berezin transform.
متن کاملCompact Composition Operators on Bergman Spaces of the Unit Ball
Under a mild condition we show that a composition operator Cφ is compact on the Bergman space Aα of the open unit ball in C if and only if (1− |z|)/(1− |φ(z)|) → 0 as |z| → 1−.
متن کاملVolterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball
Let φ be a holomorphic self-map of the open unit ball B, g ∈ H(B). In this paper, the boundedness and compactness of the Volterra composition operator T g from generally weighted Bloch spaces to Bloch-type spaces are investigated. c ©2012 NGA. All rights reserved.
متن کاملWeighted composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of C
In this paper, we study the weighted composition operators Wφ,ψ :f → ψ(f ◦ φ) between weighted Bergman spaces and Hardy spaces on the unit ball of Cn. We characterize the boundedness and the compactness of the weighted composition operators Wφ,ψ :Ap(να)→Aq(νβ) (0 < q < p <∞, −1 < α,β <∞) and Wφ,ψ :Hp(B)→Hq(B) (0 < q < p <∞). © 2006 Elsevier Inc. All rights reserved.
متن کاملA Theorem of Nehari Type on Weighted Bergman Spaces of the Unit Ball
Received 13 June 2008; Revised 12 October 2008; Accepted 20 November 2008 Recommended by Stevo Stevic This paper shows that if S is a bounded linear operator acting on the weighted Bergman spaces Aα on the unit ball in C n such that STzi TziS i 1, . . . , n , where Tzi zif and Tzi P zif ; and where P is the weighted Bergman projection, then S must be a Hankel operator. Copyright q 2008 Y. Lu an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2022
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2022108